
Communication Topology Analysis

for Concurrent Programs

Matthieu Martel and Marc Gengler

Laboratoire d'Informatique de Marseille (LIM)
Parc Scienti�que et Technologique de Luminy

163, avenue de Luminy - Case 901 F
13288 Marseille Cedex 9, France

E-mail: [Matthieu.Martel,Marc.Gengler]@esil.univ-mrs.fr

Abstract. In this article, we address the problem of statically deter-

mining an approximation of the communication topology of concurrent

programs. These programs may contain dynamic process and channel

creations and may communicate channel names as well as functions, pos-

sibly containing other communications.

We introduce a control
ow analysis which builds �nite state automata to

improve its precision. The method is twofold. First, we build an automa-

ton for each process in the concurrent system yielding an approximation

of how the synchronizations realized by the sequential components are

ordered. Second, we extract the communication topology from a reduced

product automaton, which size is polynomial in the size of the original

program. This analysis was implemented and we apply it to the veri�ca-

tion of a circuit allocation mechanism.

1 Introduction

Static analysis is a widely used technique to establish properties satis�ed by

programs, independently of a given execution context. Most common applica-

tions include compile-time optimizations and program veri�cation. However, this

scope is extended by concurrency which introduces new problems as well as

new applications. Recently, much research has been done in this area, including

Amtoft et al. [2], Bodei et al. [4, 5], Jagannathan [10], Kobayashi et al. [11],

Marinescu and Goldberg [12], Nielson and Nielson [14{16, 18].

In this article, we present a static analysis which computes a �ne approxima-

tion of the communication topology of Concurrent ML programs [22] and, more

generally, which analyzes the whole synchronizations of concurrent programs.

By determining, for each reception, the set of possibly matching emissions, we

�nd an approximation of the possibly received values.

Our analysis is a control
ow analysis (CFA). Concerning sequential func-

tional languages, the aim of a CFA is to detect which functions an expression

can evaluate to [17, 19, 23, 24]. For higher order concurrent functional languages,

such as Concurrent ML [22], this task is more complicated. Channel names may

be dynamically created and communicated anywhere in the program, new pro-

cesses can be dynamically created and functions are �rst-class values which may

be communicated. Hence, a piece of code in the source program (possibly con-

taining communications) may be executed by any process. Such analyses have

been proposed by Bodei et al. [4], Colby [6], Solberg et al. [25] and Mercouro�

[13]. However, the precision of the CFA is closely related to the approximations

made on the topology of the communications. Hence, we address the problem

of minimizing for each emission, the set of possible receptors. Eliminating some

impossible communications improves the annotations at reception points and,

consequently, on the sequential parts of the program using the received values.

From a technical point of view, we proceed as follows. First, we order the

synchronization primitives of the sequential processes in the system. This is done

by building a �nite automaton bAp for each process p. A labeled path denotes

one possible sequence of synchronizations in p. Second, we approximate how the

di�erent processes may interact altogether by building the product of the bAp's.

This product automaton possibly has size exponential in the size of the program.

Hence, we introduce a reduced product automaton size is polynomial and which

conservatively approximates the product automaton.

Applications of CFA for concurrent languages are twofold. First, mixing a

CFA with another static analysis usually improves the precision of this latter.

For instance, partial evaluation [7] of concurrent languages has been discussed

by Marinescu and Goldberg [12] and by Gengler and Martel [8, 9]. Marinescu

and Goldberg [12] also introduce a binding time analysis (BTA) which collects

informations used by the partial evaluator. However, this BTA makes rough

approximations due to the lack of informations about the topology of communi-

cations. Using a CFA would improve the performances of the partial evaluator.

Second, as outlined by Bodei et al. [4], another application of CFA for concur-

rent languages are security and program veri�cation. For a concurrent program,

a CFA allows one to statically determine whether two given processes P1 and

P2 may communicate together at one stage of their execution, or to statically

approximate the set of channels which are shared by P1 and P2 during their ex-

ecution. For instance, these results enable one to check access rights properties.

Section 2 gives an informal overview of the techniques developed in this

article. Section 3 brie
y introduces the subset of Concurrent ML we use. We

introduce the analysis in Sections 4 and 5 First, in Section 4 we de�ne an analysis

for the individual processes and second, in Section 5, we introduce two ways to

analyze a pool of processes, respectively based on product and reduced product

automata. This analysis was implemented and results are discussed in Section 6

for a virtual circuit allocation mechanism, similar to the one used in ATM.

2 General Description

To compute precise annotations, a CFA has to use a �ne approximation of the

topology of the communications realized by a program. In this Section, we illus-

trate how our analysis works using the concurrent program of Figure 1 a).

In this system, Processes p1 and p3 respectively realize two and one emis-

sions, and p2 realizes three receptions. We assume that all the communications

are made on the same channel. Communications are synchronous, i.e. an emis-

sion or a reception blocks the process until the communication occurs. In the

remainder of this article, we use the following vocabulary. A communication is

the synchronous interaction between an emission point and a reception point. A

synchronization is either a communication or a new process creation (a fork).

A synchronization point is either a communication point or a fork point.
A �rst way to conservatively annotate p2 is to consider that any reception

may receive its value from any emission on the same channel [25]. Let us call s1
and s2 the emissions of p1, s3 the emission of p3, and r1, r2 and r3 the receptions

of p2. Let bC(si) (resp. bC(rj)) be the abstract value sent (resp. received) at si (resp.
rj), 1 � i; j � 3. Such an analysis assigns to bC(r1), bC(r2) and bC(r3) the values

bC(rj) =
[

i2f1;2;3g

bC(si) j 2 f1; 2; 3g (1)

As sketched in Figure 1 b), Equation (1) describes a correct approximation

of the communication scheme of Figure 1 a). However, it is a trivial matter of

fact that s1 cannot communicate with r3 nor s2 with r1.

r2

r1

r3

s1

s2

s3r2

r1

r3

s1

s2

s3r2

r1

r3

s1

s2

s3

a) b) c)

p1 p2 p3 p1 p2 p3 p1 p2 p3

Fig. 1. a) A system made of communicating processes. b) Approximation of the com-

munication topology computed by classical methods. c) Approximation of the topology

computed by our CFA.

In order to assign a �ne abstract value to receptions, a CFA has to approxi-

mate closely the communication topology of programs. This problem is twofold

and we address it as follows.

{ Obviously, the communication graph of a concurrent program depends on

how the communications are ordered on each process. In this article, this

point is addressed as follows. We build a �nite state automaton bA which in-

dicates how the synchronization points possibly follow each other. For each

labeled sub-expression el in the program, we use an automaton whose ini-

tial and �nal states are identi�ed by the nodes bl and el. The transitions

between these nodes depends on the expression. The transitions between sub-

expressions indicate their respective evaluation order. A transition related

to a sequential reduction step is labeled " and we introduce a l-transition to

denote the occurrence of a synchronization point labeled l. The result is an

approximation of the communication scheme of each process.
{ Knowing how the synchronizations are ordered on each process, we have to

determine their interactions. A �rst way to address this problem is to con-

sider the product of the automata related to the di�erent processes in the

program. Based on the collection bS = (bAp)p2Dom(P) of automata describ-

ing the synchronization points of the di�erent processes, we show that the

product automaton a\

(
bS) describes a correct approximation of the synchro-

nizations the program may realize. However, on one hand the size of a
\

(
bS)

is possibly exponential in the size of the program, while on the other hand it

contains more informations than really needed for the analysis. Intuitively,

the only relevant informations in a
\

(
bS) for the analysis are the points which

may synchronize together. Hence, we introduce a reduced product automa-

ton a
]

(
bS) which is polynomial in the size of the source program and we prove

that a
]

(
bS) correctly approximates a

\

(
bS). The result is an approximation

of the possible interactions between processes.

In Figure 1 c), we show the approximation of the topology obtained using

the method described above for the communication scheme of Figure 1 a). In

the remainder of this Section we discuss the approximations made by our CFA.

First, the abstract value attached to a sub-expression is the union of all the

abstract values carried by the di�erent reduction paths of a non-deterministic

program. For communications, this means that the value attached to a reception

is the union of all the values carried by the potential emitters. This corresponds

to the approximation done in Figure 1 c). Such approximations make the control

ow annotations grow. However, any abstract value collected this way is related

to one of the concrete values in one of the possible communication schemes.

Other approximations are obviously done during the analysis of the body of

loops. First, di�erent channel names created by the same channel() instruc-

tion inside a loop are identi�ed. Hence, communications over such channels are

assumed to be possible, even though the emitter and the receptor use di�erent

instances of the same instruction.

Second, a process p may communicate with the communication points oc-

curring inside the body b of a loop, as long as p assumes that the loop has

not terminated. However, thanks to the sequential automata, the analysis keeps

track of the communication ordering inside b. The only sequences allowed are

those corresponding to an unfolding of b.

For instance, let us consider the program of Figure 2 which describes a

multiplexer-demultiplexer of channels. This program is made of two processes p1
and p2 written in Concurrent ML. Each sub-expression is labeled by an integer.

p1 alternatively receives data on channels �1 and �2. These data are transmitted

on a channel
. p2 receives on
 the multiplexed data and transmits them on o1
and o2. We assume that
 is only shared by p1 and p2. So, the data sent on o1

(resp. o2) are the ones the multiplexer received on �1 (resp. �2). Finally, a process

p3 sends new channel names to the multiplexer on �1 and �2.

i1

i2

o1

o2

γ
Multiplexer Démultiplexer

p1 : rec
1 multiplex �1 �2
 =

let
2 c1= send

3
 (receive4 �1)

and
5 c2= send

6
 (receive7 �2)

in (multiplex �1 �2
)8

p2 : rec
9 demult o1 o2
 =

let
10 c1= send

11 o1 (receive12
)

and
13 c2= send

14 o2 (receive15
)

in (demult o1 o2
)16

p3 : rec
17 emitter �1 �2 =

let
18 e1= send

19 �1 channel()
20

and
21 e2= send

22 �2 channel()
23

in (emitter �1 �2)
24

Fig. 2. Multiplexer - demultiplexer written in Concurrent ML.

Our implementation of the analysis determines that the abstract value emit-

ted at point 11 (resp. 14) is the singleton f20g (resp. f23g). As stated before,

di�erent channel names created at the same point are not distinguished. How-

ever, the CFA detects that the instance of the �rst reception on
 (point 12) only

may receive a value sent by an instance of the �rst emission (point 3). Similar

observations can be done for the second emission and reception on
.

3 Concurrent ML

In this Section, we introduce the subset of Concurrent ML [3, 20, 21] used in this

article to illustrate how our analysis works. The syntax is de�ned in Figure 3.

Labels are attached to terms. They are used during the analysis which as-

sumes that each sub-expression in the initial program has a unique label. This

property is not maintained by reduction. The language contains conditionals, a

let construct, and the operator rec for recursive functions. channel()l denotes

a function call which creates and returns a new channel name k di�erent from

all the existing ones. (fork el00)
l creates a new process which computes el00 and

evaluates to ()(the value of type unit). (send el00 el11)
l is the blocking emission

of the value of el11 on the channel resulting from the evaluation of el00 . e
l0
0 and

el11 respectively are the subject and the object of the communication. Once the

communication is done, a send evaluates to the value of its object. (receive el00)
l

is the blocking reception of a value on the channel name described by el00 (the

subject of the reception). Values are in the domains of basic types or channel

names or functions.

e ::= vl j xl

j (e
l0
0 e

l1
1)

l j (if e
l0
0 e

l1
1 e

l2
2)

l

j (let xl2 = e
l0
0 in e

l1
1)

l j channel()l

j (fork e
l0
0)

l j (send e
l0
0 e

l1
1)

l

j (receive e
l0
0)

l

E ::= [] j (E e
l1
1)

l j (vl0 E)l j (if E e
l1
1 e

l2
2)

l

j (let xl2 = E in e
l1
1)

l

j (send E e
l1
1)

l j (send vl0 E)l

j (receive E)l

v ::= B j fun xl1 => e
l0
0

j rec f l1 xl2 => e
l0
0

B ::= () j i j b j k

i ::= : : :� 1 j 0 j 1 : : :

b ::= true j false

k ::= k0 j k1 : : :

P ::= hp : ei j P :: P 0

p ::= p j q : : :

Fig. 3. Language de�nition.

The operational semantics, given in Figure 4, are based on the language �cv
de�ned by Reppy [20]. ,! is used for sequential reduction steps. el00 fx el11 g

denotes the term obtained by discarding the labels of the occurrences of x in el00
and substituting el11 to x.

[`]
����! is used for concurrent reduction steps. These steps are annotated

with labels ` 2 Lab2[f"g which only are used in order to prove the correctness of

the analysis. An "-labeled step corresponds to a sequential reduction step made

by one of the processes in the pool. The transition related to a communication

between two instructions labeled ls and lr is annotated ls; lr and the reduction

step related to a process creation is annotated lf ; lf where lf is the label of the

fork. Following Reppy [20], we use evaluation contexts E de�ned in Figure 3.

In addition, we use the classical notion of con�guration K;P to denote a

concurrent system in Concurrent ML. K is the environment for channels and P ,

the process pool, is de�ned in Figure 3.

A process is de�ned by hp : eli, p being the name associated to the process

which computes el. In Figure 3, [c]
����! is de�ned over process pools. Inside a

process, a sequential reduction step is done using ,!.

For the instruction (channel())l, a new channel name k is assigned to the

expression and the set K of used channel names is enriched with k. When an

expression is forked, the father evaluates to () and the new process is named q,

where q is a fresh process name. Finally, a communication may occur between

an emitting process ps and a receiving process pr which use the same channel.

In this case, both ps and pr evaluate to the value exchanged.

4 Analysis of the Sequential Expressions

In this Section, we introduce the basic analysis within a sequential process.

Section 5 presents the analysis between processes. Note that there are not sepa-

rable analyses, because the interactions between processes a�ect the control-
ow

analysis of the individual processes. If el contains fork's, the bodies of the child

e
l0
0 ,! e

l2
2

(e
l0
0 e

l1
1)

l ,! (e
l2
2 e

l1
1)

l

e
l1
1 ,! e

l2
2

(vl0 e
l1
1)

l ,! (vl0 e
l2
2)

l

((fun xl0 => e
l1
1)

l2 vl3)l ,! e
l1
1 fx vl3g

(rec f l0 xl1 => e
l2
2)

l ,! (fun xl1 => e
l2
2 ff (rec f l0 xl1 => e

l2
2)

lg)l

e
l0
0 ,! e

l1
1

K; P :: hp : E[e
l0
0]i

["]
����! K; P :: hp : E[e1

l1]i

k 62 dom(K)

K;P :: hp : E[(channel())l]i ["]
����! K[k 7! l]; P :: hp : E[kl]i

q 62 dom(P)

K;P :: hp : E[(fork e
l0
0)

l]i [l;l]
����! K;P :: hp : E[()l]i :: hq : el00 i

K; P :: hps : Es[(send kl0 vl1)ls]i :: hpr : Er[(receive kl2)lr]i
[ls;lr]
����! K;P :: hps : Es[v

l1]i :: hpr : Er[v
l1]i

Fig. 4. Language semantics.

processes are analyzed at the same time as el, but not their interactions whose

analysis is deferred to Section 5.

The analysis of an expression el is a triple (bC; bE ; bA). Let Lab and Id respec-

tively denote the sets of labels and variables occurring in el. bC, bE and bA are

de�ned as follows.

{ bC : Lab ! }(Lab) is the abstract cache which approximates, for any sub-

expression el in the program, the set bC(l) of values el may evaluate to. The

abstract values either are functions denoted by their labels or channel names

denoted by the label of the instruction channel() which created them. Type

discipline ensures that no confusion is made between both kinds of values

and avoids the introduction of two di�erent caches.
{ bE : Id ! }(Lab) is the abstract environment which binds free variables

during the analysis.

{ bA = (�;b; Q;Qf ; �) is a �nite automaton which indicates how the synchro-

nizations are ordered inside the expression we analyze. � = Lab [f"; �g is

the alphabet, Q is the set of state, b 2 Q is the initial state, Qf = feg � Q

contains a unique �nal state. � 2 (Q��)! }(Q) is the transition function.

In Figure 5, we de�ne inductively on the structure of the terms the con-

straints a triple (bC; bE ; bA) has to satisfy in order to de�ne a correct analysis for

an expression el. If so, we write bC; bE ; bA ` el.
We use the following notations. [[s

`
+ s

0]] denotes an automaton whose initial

and �nal state respectively are s and s0 and such that Q = fs; s0g and s0 2 �(s; `).

bC; bE; bA ` cl , [[bl
"
+ el]] v bA bC; bE; bA ` xl , bE(x) � bC(l); [[bl

"
+ el]] v bA

bC; bE; bA ` (fun xl1 => e
l0
0)

l ,

(
l 2 bC(l); bC; bE[x 7! bC(l1)]; bA0 ` e

l0
0 ;

bA0 v bA
[[bl

"
+ el]] v bA; [[bl �

+ bl0]] v
bA; [[el0 �

+ el]] v bA

bC; bE; bA ` (rec f l1 xl2 => e
l0
0)

l ,

8><
>:
l 2 bC(l); bC(l) � bC(l1); bA0 v bAbC; bE[f 7! bC(l1)][x 7! bC(l2)]; bA0 ` e

l0
0

[[bl
"
+ el]] v bA; [[bl �

+ bl0]] v
bA; [[el0 �

+ el]] v bA

bC; bE; bA ` (el00 e
l1
1)

l ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

bC; bE; bA0 ` e
l0
0 ;

bC; bE ; bA1 ` e
l1
1bA0 v bA; bA1 v bA; [[bl "

+ bl0]] v
bA; [[el0 "

+ bl1]] v
bA

8l2 2 bC(l0) : (fun xl4 => e
l3
3)

l2 2 prg;��� bC(l1) � bC(l4); bC(l3) � bC(l); [[el1 "
+ bl3]] v

bA; [[el3 "
+ el]] v bA

8l2 2 bC(l0) : (rec f l4 xl5 => e
l3
3)

l2 2 prg;�������
bC(l1) � bC(l5); bC(l3) � bC(l)
[[el1

"
+ bl3]] v

bA; [[el3 "
+ el]] v bA

[[el1
"
+ el]] v bA; [[el3 "

+ bl3]] v
bA

bC; bE; bA ` channel()l , l 2 bC(l); [[bl "
+ el]] v bA

bC; bE; bA ` kl , l 2 bC(l); [[bl
"
+ el]] v bA

bC; bE; bA ` (fork e
l0
0)

l , bC; bE; bA0 ` e
l0
0 ; [[bl

l
+ el]] v bA; bA0 v bA; [[bl l

+ bl0]] v
bA

bC; bE; bA ` (send e
l0
0 e

l1
1)

l ,

8><
>:
bC; bE; bA0 ` e

l0
0 ;

bC; bE ; bA1 ` e
l1
1 ;

bC(l1) � bC(l)bA0 v bA; bA1 v bA; [[bl "
+ bl0]] v

bA
[[el0

"
+ bl1]] v

bA; [[el1 l
+ el]] v bA

bC; bE; bA ` (receive e
l0
0)

l ,

(bC; bE ; bA0 ` e
l0
0bA0 v bA; [[bl "
+ bl0]] v

bA; [[el0 l
+ el]] v bA

Fig. 5. Speci�cation of the analysis.

bA v bA0 states that bA is a sub-automaton of bA0, i.e. Q � Q0 and � � �0. Hence,

[[s
`
+ s

0]] v bA indicates that there is a `-transition from s to s
0 in bA. The

analysis builds for each expression el an automaton bA which initial and �nal

states respectively are Start(bA) = bl and End(bA) = felg. These automata are

de�ned inductively on the structure of the terms. Their graphical representation

is given in Figure 6. "-transitions denote sequential reduction steps.

Because the evaluation of a �rst order constant cl does not involve any

synchronization, the automaton associated to this expression is made of an "-

transition from the initial state bl to the �nal state el, as shown in Figure 6.

This is ensured by the constraint [[bl
"
+ el]] v bA in the speci�cation of Figure 5.

For a variable xl; bE(x) is added to bC(l) indicating that the abstract value

of point l depends on the abstract value of x in the environment. In addition,

Bl El
ε

Bl0 El0

µ µ

ε
ElBl

Bl0 El0

µ µ

ε
ElBl

cl, xl, channel()l or kl (fun xl1 => e
l0
0)

l (rec f l1 xl2 => e
l0
0)

l

Bl Bl0 El0 Bl1 El1

Bl2 El2

ElEl3Bl3
µ

ε ε

ε

ε

ε
µ

Bl Bl0 El0 El

Bl1 El1

El2BL2

ε
ε

ε

ε

ε
Bl Bl0 El0 Bl1 El1 El

ε ε ε

(e
l0
0 e

l1
1)

l (if e
l0
0 e

l1
1 e

l2
2)

l (let xl2 = e
l0
0 in e

l1
1)

l

Bl El

El0Bl0

l

l Bl El0 Bl1 El1 ElBl0
ε ε l

Bl Bl0 El0 El
ε l

(fork e
l0
0)

l (send e
l0
0 e

l1
1)

l (receive e
l0
0)

l

Fig. 6. Automata attached to the expressions during the analysis.

because no reduction may come from the evaluation of a variable, the automaton

related to xl is made of an "-transition between the states bl and el. Again, this

is ensured by the constraint [[bl
"
+ el]] v bA.

(fun xl1 => el00)
l and (rec f xl1 => el00)

l are values. Their evaluation does

not require any computation. Hence, just like for �rst order constants, the initial

state bl of the automaton is linked to the �nal state el by an "-transition. In

addition, the body el00 is analyzed, yielding an automaton bA0 with bl0 and el0

as initial and �nal states. As depicted in Figure 6, we connect bA0 to bA by a �-

transitions via the constraints [[bl
�
+ bl0]] v

bA and [[el0
�
+ el]] v bA. �-transitions

only are used to link both parts of the automaton and never describe a valid

path between nodes. Concerning the abstract cache, l is added to bC(l), indicating
that the current function is among the ones which may occur at this point.

The analysis of an application (el00 el11)
l �rst relies on these of el00 and el11

which yield two automata bA0 and bA1. Because of the evaluation order, the

synchronizations made by el00 precede the ones made by el11 . Also, assuming that

el00 evaluates to (fun xl4 => el33)
l2 , the synchronizations made by el11 precede the

ones resulting from the evaluation of el33 with the right value for x. Hence we

build the following automaton. bl is linked to the initial state of bA0 and bA0's

�nal state is linked to bA1 initial state by "-transitions. This corresponds to the

constraints bA0 v bA, bA1 v bA, [[bl "
+ bl0]] v

bA and [[el0
"
+ bl1]] v

bA.

Next, bC(l0) denotes the labels of the functions el00 may evaluate to. For each

function (fun xl4 => el33)
l2 such that l2 2 bC(l0), we indicate that the synchroniza-

tions in the body el33 follow these in el11 by asking [[el1
"
+ bl3]] v

bA. Finally, the
�nal states of el and el33 are linked by [[el3

"
+ el]] v bA. prg denotes the program

for which we compute an analysis. In Figure 6 we show the automaton resulting

from the analysis of an expression (el00 el11)
l, assuming that bC(l0) = fl2g and that

(fun xl4 => el33)
l2 2 prg.

The application of a recursive function is analyzed similarly. Because the

body may be executed zero or many times, we add [[bl
"
+ el]] v bA and [[el4

"
+

bl4]] v
bA, where l4 is the label of the body of the recursive function.

Channels are identi�ed by their creation points. channel() being a function

call, for an occurrence of channel()l in the program, we collect l in bC(l). So, no
distinction is made between di�erent channels created in a recursive function.

For an expression (fork el00)
l, we only analyze the body el00 of the child

process at this stage of the analysis, obtaining an automaton bA0. In Section 5,

during the analysis of the interactions between processes, we consider fork's

just like another communications. For now, [[bl
l
+ el]] v bA indicates that the

execution of the fork consists of doing a synchronization denoted l. On the other

hand, the automaton bA0 which describes the synchronizations realized by el00 is

included in bA and linked to the initial state bl of the expression we analyze by

[[bl
l
+ bl0]] v

bA. In Section 5.2, when considering the product automaton, el00
stays frozen until it can synchronize on l with the fork.

The speci�cation of the analysis for an emission (send el00 el11)
l states that

the sub-expressions are analyzed. [[el0
"
+ el1]] v

bA indicates that the execution

of el00 precedes the one of el11 and [[el1
l
+ el]] v bA states that l denotes the last

synchronization point in (send el00 el11)
l.

Receptions are treated similarly. [[el0
l
+ el]] v bA states that the synchroniza-

tions in the sub-expression precede the synchronization related to the reception.

Note that no constraint is introduced on the received abstract value at this stage

of the analysis. This is due to the fact that bC; bE ; bA ` el only speci�es the analysis
of the di�erent processes without considering their synchronizations. However,

in a concurrent execution, a reception (receive el00)
l may receive either a basic

value or a function or a name, depending on its type. Hence, in Sections 5.1 and

5.2, when considering process interactions, we introduce constraints indicating

how bC(l) is bound to. These constraints are speci�ed in de�nitions 4 and 8.

As an intermediary result, we introduce some properties satis�ed by the

analysis de�ned in Figure 5. First we examine the existence of a best analysis

for an expression el and, second, we focus on correctness. These results are used

further in this article, when proving the main property concerning the correctness

of the speci�cation over concurrent reduction.

Let (bC1; bE1; bA1) and (bC2; bE2; bA2) be two analyses for the same expression

el. (bC1; bE1; bA1) � (bC2; bE2; bA2) denotes that (bC1; bE1; bA1) is more precise than

(bC2; bE2; bA2). � is de�ned by

(bC1; bE1; bA1) � (bC2; bE2; bA2),

8><
>:
8l 2 Lab; bC1(l) � bC2(l)
8x 2 Id; bE1(x) � bE2(x)bA1 v bA2

(2)

The existence of a least analysis in the sense of � stems from the fact that, for

an expression el, the set f(bC; bE ; bA) : bC; bE ; bA ` elg is a Moore family1.

The main property introduced in this Section concerns sequential subject

reduction and indicates that if a triple (bC; bE ; bA) is a correct analysis for an

expression el then it is still correct after a sequential reduction step ,! (Section

3). First, we introduce the order relation l over automata.

De�nition 1 Let bA and bA0 be two automata. bAl bA0 i� any path labeled `1 : : : `n
in bA is a path in bA0.

Intuitively, the labels of the transitions in an automaton bA built during the

analysis of an expression el correspond to the synchronizations realized during

the execution of el. Hence, a path in bA denotes one possible sequence of syn-

chronizations the execution of el may lead to. Sequential reduction steps do not

realize synchronizations but may discard some possible sequences of synchroniza-

tions. For instance, consider the execution of a conditional. Hence, if el ,! e0
l0

then any possible sequence of communication in e0
l0

is a sequence of communi-

cation in el. Considering the automata bA and bA0 built during the analysis for el
and e0

l0

, we have bA0 l bA. This is summed up by the proposition below.

Proposition 2 (Sequential subject reduction) If bC; bE ; bA ` el and el ,! e0
l0

then bC; bE ; bA0 ` e0l0 for some bA0 such that bA0 l bA.
Analyzing separately the processes of an application allows us to order the

synchronization points on each process. However this is not enough to obtain a

�ne approximation of the topology of communications. In the following Section,

we consider the product automaton of the automata described above in order to

compute the synchronization realized by the program.

5 Process Pool Analysis

In this Section, we focus on analyzing a process pool. Section 5.1 de�nes an

analysis j=\ based on the product automaton a
\

(
bS) of a collection bS of automata

built as in Section 4. We prove the correctness of j=\ by a subject reduction

property. In Section 5.2, we introduce a second analysis j=] based on a reduced

product automaton a
]

(
bS) which size is polynomial in the size of the original

program. We prove that j=] is a correct approximation of j=\.

1 A subset X of a complete lattice (L;�) is a Moore family i� for all set Y � X,

(uY) 2 X. Notice that a Moore family X never is empty and admits a least element

since (uX) 2 X (see [19]).

5.1 Product Automaton Based Analysis

Let bS = (bAp)p2Dom(P) be a collection of automata. The states in the product

automaton a
\

(
bS) are products of the states of the automata in bS . An "-transition

inside an automaton bAp denotes a sequential reduction step and is transcribed

in a
\

(
bS). An l-transition in bAp denotes a synchronization point. We add (l; l0)-

transitions in a
\

(
bS) if l and l0 are transitions in two automata of bS such that

the instruction labeled l may synchronize with the instruction labeled l0.

De�nition 3 (Product automaton) Let bS be a collection of n automata. The

product automaton a
\

(
bS) of the automata in bS is a tuple (�\; q

\
0; Q

\; �\). The

alphabet is �\ � Lab2 [f"; �g. Q\ is made of k-tuples (s1; : : : ; sk) in which si,

1 � i � k, denotes the advancement of the ith automaton. q
\
0 is the initial state

and �\ 2 (Q\��\)! }(Q\) is the transition function. a
\

(
bS) is built as follows.

(i) The initial state q
\
0 2 Q\ is the product of the initial states Start(bAp) of the

automata bAp 2 bS, i.e.
q
\
0

def
=
O
bAp2 bS

Start(bAp) (3)

(ii) For all q\ 2 Q\ such that q\ = (s0; : : : ; sn),

(a) 8i, 1 � i � n, 8` 2 f"; �g,

�����
�
9 bAp 2 bS : [[si

`
+ s

0
i]] v bAp

�
)

[[q\
`
+ (s1; : : : ; s

0
i; : : : ; sn)]] v a

\

(
bS)

(b) 8i; j, 1 � i 6= j � n,0
BBB@9 bAp; bAp0 2 bS :

���������

[[si
ls
+ sls]] v bAp

[[sj
lr
+ slr]] v

bAp0

(send e
l0
0 e

l1
1)

ls 2 prg

(receive e
l2
2)

lr 2 prg

1
CCCA

) [[q\
ls;lr
+ (s1; : : : ; sls ; : : : ; slr ; : : : ; sn)]] v a

\

(
bS)

(4)

(c)

8i; 1 � i � n;

����������

0
BB@9 bAp 2 bS :

��������
[[si

lf
+ slf]] v

bAp

[[si
lf
+ sl0]] v

bAp

(fork e
l0
0)

lf 2 prg

1
CCA

) [[q\
lf ;lf
+ (s1; : : : ; slf ; : : : ; sn; sl0)]] v a

\

(
bS)

(5)

The product automaton is built incrementally. We start with the only state

q
\
0 and any state q

\ = (s1; : : : ; sk) in a
\

(
bS) describes one of the possible advance-

ments of the process pool. We add an "-transition going out of q\ every-time there

is an "-transition in one of the automata bAp going out of si, 1 � i � k. Doing

so, we obtain a new state which also denotes one of the possible advancements.

Next, an l-transition denotes a synchronization point. Two processes may

communicate together if they own matching synchronization points ls and lr

related to an emission and a reception and which possibly are active at the same

time. In this case there is a state q\ = (s1; : : : ; sk) and two automata bAp andbAp0 in bS such that [[ss
ls
+ s

0
s]] v

bAp and [[sr
lr
+ s

0
r]] v

bAp0 , 1 � s; r � k, s 6= r.

Then the transition q\
ls;lr
+ q\

0
is added to the product automaton where q\

0
is a

new state obtained by substituting s
0
s and s

0
r to ss and sr in q\.

Notice that the product automaton allows a communication between any

emitter s and any receptor r which possibly are active at the same time, inde-

pendently of the channel they use. In De�nition 4, the abstract value sent by s

is added to the abstract value attached to r i� s and r possibly communicate

on the same channel. Greater precision would be obtained by directly discarding

these impossible communications in a
\

(
bS). However, the product automaton

would not be de�ned independently of the analysis, overloading the notations.

Finally, a fork creates a new process. Hence, for any transition [[si
lf
+ slf]] vbAp such that there exists a state q\ = (s1; : : : ; si; : : : ; sk) in Q\, the (k + 1)

product state (s1; : : : ; slf ; : : : ; sk; sl0) is added to Q\. This tuple denotes the

state resulting from the execution of the fork. It contains one more component

sl0 which describes the advancement of the new process. Concerning the father

process, the state denoting its advancement is updated to indicate that the

process creation is done.

In the remainder of this Section, we specify the conditions a triple (bC; bE ; bA\

)

has to satisfy to be an analysis for a process pool P and we prove the correctness

of this analysis. bC and bE are de�ned in the same way as in Section 4 and bA\

 is

the product of the automata bAp built for the sequential expressions of P . Also,

we introduce a new order relation extending l to deal with the way the product

automata are related under concurrent reduction.bC; bE ; bA\

 j=

\ P denotes that the triple (bC; bE ; bA\

) is an analysis for the process

pool P , where j=\ is speci�ed in De�nition 4. Intuitively, we require that all the

expressions in the process pool are correctly abstracted using the automaton bA\

and that for any communication described in bA\

, the abstract value sent by the

emitter is contained in the abstract value attached to the receptor.

De�nition 4 A triple (bC; bE ; bA\

) de�nes good annotations for a process pool P ,

denoted bC; bE ; bA\

 j=

\ P i�

(i) bA\

 = a

\

(
bS) for some collection bS of automata such that bS = (bAp)p2Dom(P)

and bC; bE ; bAp ` e
l for all hp : eli 2 P .

(ii) For all [[q
ls;lr
+ q0]] v bA\

 s.t.

�
(send el00 el11)

l0i 2 prg

(receive el22)
l0j 2 prg

, bC(l0) \ bC(l2) 6= ?

implies bC(l1) � bC(lr).
As stated in Section 4, the abstract cache bC indi�erently is used to collect

abstract values denoting either channels or functions. In De�nition 4, el00 and el22
have type Channel and consequently the condition bC(l0) \ bC(l2) 6= ? considers

abstract values related to channels in order to determine whether the emitter

and the receptor may communicate. If so, the constraint bC(l1) � bC(lr) involves
abstract values denoting channels or functions, depending on the type of el11 .

Similarly to Section 4, the existence of a least analysis for a process pool P

stems from the fact that the set f(bC; bE ; bA\

) : bC; bE ; bA\

 j=
\ Pg of correct analysis

for a process pool P is a Moore family w.r.t. the relation � of Equation (2).

In order to prove that an analysis is preserved under reduction, we introduce

a new order relation
`
l which extends l as follows. A path in bA\

 describes the

sequence of synchronizations realized by one possible execution of the program.

This relation allows us to state that if K;P [`]
����! K 0; P 0 then the product

automaton bA\

0 which abstracts P 0 contains all the paths in bA\

 starting from

q\
0
where q\

0
is a state we access from q

\
0 by an `-transition. So, any sequence

of synchronizations in bA\

0 is a sequence of synchronization in bA\

 following the

synchronization described by `.

De�nition 5 Let bA\

 and bA\

0 be two product automata and ` 2 � a letter in

the alphabet. bA\

`
l bA\

0 i� for each path labeled `1 : : : `n in bA\

 there exists a

path labeled `:`1 : : : `n in bA\

0.

Notice that bA\

"
l bA\

0 i� bA\

l
bA\

0. Finally, we introduce the following prop-

erty which describes how the annotations behave under reduction.

Proposition 6 (Concurrent subject reduction) Let P be a process pool such

that bC; bE ; bA\

 j=

\ P . Then if K;P [`]
����! K;P 0 then bC; bE ; bA\

0 j=\ P 0 for some

product automaton bA\

0 such that bA\

0
`
l bA\

.

5.2 Polynomial Size Analysis

In this Section, we introduce an automaton a
]

(
bS) which is a reduced version of

a
\

(
bS). While the size of the product automaton is possibly exponential in the

size n of the program, a
]

(
bS) has size O(n3). We show that a

]

(
bS) can be used

instead of a
\

(
bS) for the analysis.

Intuitively, the only relevant informations needed by the analysis are the

pairs of synchronizations points which may interact together. For instance, we

are interested in the set of potential emission points which may communicate

with a given reception point, independently of any notion of ordering, i.e. of the

place of this communication in a trace of the execution.

The product automaton a
\

(
bS) contains all the sequences of synchronizations

of the whole possible executions, which is more precise than needed for our

purpose. Hence, we reduce its size by discarding such irrelevant informations

and still keeping enough precision to eliminate non possible synchronizations.

This compromise is obtained in a
]

(
bS) by building an automaton able to

answer to the question: \which are the possible synchronization points possibly

following a given synchronization?". Let l0 and l1 be the labels of matching syn-

chronization points. The state ql0;l1 denotes this synchronization in a
]

(
bS) and

the set of synchronization points following the interaction is given by L(ql0;l1).

A new synchronization between points l2 and l3 is allowed if both l2 and l3
belong to L(ql;l0) for some previous synchronization denoted by ql;l0 . In this case,

we add an (l2; l3)-transition from ql;l0 to ql2;l3 and L(ql2;l3) is updated.

Let S denote the set of states terminating an (ls; lr)-transition in a
\

(
bS). S

is approximated in a
]

(
bS) by a single state qls;lr . Hence, any (ls; lr)-transition in

a
]

(
bS) terminates in qls;lr . In addition, a

]

(
bS) keeps track of the advancement of

the sequential automata after the synchronization denoted by (ls; lr) via L(qls;lr)

which contains all the nodes s such that s occurs in q for some q 2 S.

De�nition 7 (Reduced product automaton) Let bS be a collection of n au-

tomata. The reduced product automaton a
]

(
bS) of the automata in bS is a tuple

(�]; q
]
0; Q

]; �]; L). The alphabet is �] = Lab2. The states belong to Q] = fql;l0 :

l; l0 2 Labg[fq
]
0g where q

]
0 is a fresh initial state. �] 2 (Q]��])! }(Q]) is the

transition function. L : Q] ! }(QP), where QP = [
bAp2

bS
State(bAp), assigns

to any state ql;l0 the possibly active states of the bAp 2 bS once the points l and l0

have synchronized together. a
]

(
bS) is built as follows.

(i) q
]
0 2 Q] and L(q]0) = [bAp2 bS

Start(bAp).

(ii) For all q 2 Q],
(a) 8s 2 L(q),

�
9 bAp 2 bS : [[s

"
+ s

0]] v bAp

�
) fs0g � L(q)

(b) For all ss 2 L(q), sr 2 L(q),0
BBB@9 bAp; bAp0 2 bS :

8>>><
>>>:
[[el1

ls
+ sls]] v

bAp

[[el2
lr
+ slr]] v

bAp0

(send e
l0
0 e

l1
1)

ls 2 prg

(receive e
l2
2)

lr 2 prg

1
CCCA)

8><
>:
[[q

ls;lr
+ qls;lr]] v a

]

(
bS)

�(q) n fel1 ; el2g � L(qls;lr)

fsls ; slrg � L(qls;lr)

(6)

(c) 8sf 2 L(q),0
BB@9 bAp 2 bS :

8>><
>>:
[[blf

lf
+ slf]] v

bAp

[[blf
lf
+ sl0]] v

bAp

(fork e
l0
0)

lf 2 prg

1
CCA)

8><
>:
[[q

lf ;lf
+ qlf ;lf]] v a

]

(
bS)

L(q) n fblf g � L(slf ;lf)

fslf ; sl0g � L(slf ;lf)

(7)

a
]

(
bS) is built incrementally. We start with a fresh initial state q

]
0. L(q

]
0)

contains the initial states of the automata in bS indicating that the related points

belong to the set of possible active points at the beginning of the execution. An

"-transition in some bAp 2 bS denotes an internal reduction step of the process p.

Hence, every time that s 2 L(q) and [[s
"
+ s

0]] v bAp for some s 2 QP and q 2 Q],

s
0 is added to L(q) indicating that s0 also is a possibly active point after execution

of the synchronization denoted by q and before any other synchronization. This

is done in (2a).

Next, consider the transitions [[el1
ls
+ sls]] and [[el2

lr
+ slr]] of two automatabAp and bAp0 . The communication is possible if el1 and el2 possibly are active at

the same time, i.e. if el1 and el2 both belong to L(q) for some state q 2 Q]. If so,

the transition [[q
ls;lr
+ qls;lr]] is added to a

]

(
bS) and L(qls;lr) has to contain the

active points once the synchronization has been done. Hence L(q) contains the

points active before the synchronization except el1 and el2 , as well as the points

following the communication, namely sls and slr . This is done in (6). forks are

treated similarly in (7). A new state qlf ;lf is added to Q
] and L(qlf ;lf) is updated

in the same way as for communications.

2

1

3

5

6

7

4

8

9
269s3r2

259s1r1

368s2r2

379s3r3 379s2r3

269s1r2

159s3r1

148q0

r2 s3 s2,r2 s1,r2

s1

s2

r3

r1

s3,r2

s3,r1s1,r1

s3,r3 s2,r3 s2,r3

a) b)

Fig. 7. a) Collection of automata for the program of Fig. 1. b) Reduced product au-

tomaton for the previous collection. Values in front of the states correspond to L(q).

Figure 7 shows the reduced product automaton corresponding to the example

of Figure 1. In this example, one can see that there is an exact correspondence

between the states of the product automaton and the values of the function L.

In this case, the reduced automaton is as precise as the product automaton and

strictly described the same possible communications.

Based on a]

(
bS), we introduce a new analysis j=] for a process pool P . Again,

we used the sets bC, bE de�ned in Section 4 as well as a reduced product automaton

denoted bA]

. j=

] is obtained by substituting the reduced product automaton to

the product automaton in the de�nition of j=\.

De�nition 8 A triple (bC; bE ; bA]

) de�nes good reduced annotations for a process

pool P , denoted bC; bE ; bA]

 j=

] P i�

(i) bA]

 = a

]

(
bS) for some collection bS of automata such that bS = (bAp)p2Dom(P)

and bC; bE ; bAp ` e
l for all hp : eli 2 P .

(ii) For all [[q
ls;lr
+ q0]] v a

]

(
bS) s.t.

�
(send el00 el11)

ls 2 prg

(receive el22)
lr 2 prg

, bC(l0) \ bC(l2) 6= ?
implies bC(l1) � bC(lr).
Again, the existence of a least analysis in the sense of � stems from the fact

that f(bC; bE ; bA]

) : bC; bE ; bA]

 j=
] Pg is a Moore family.

The reduced automaton a
]

(
bS) collapses the states of the product automaton

a
\

(
bS) following a given synchronization. As a consequence, any transition going

out of a state q\ in a
\

(
bS) corresponds to an outgoing transition going out of q]

in a]

(
bS) where q] is the state approximating q\. Hence any path in a\

(
bS) also is

a path in a
]

(
bS). We use this observation to prove a

]

(
bS) may be substituted to

a
\

(
bS). Doing so, we state that the reduced automaton contains all the sequences

of synchronizations of the product automaton.

Proposition 9 (Equivalence of automata) Let P be a process pool and bS =

(bAp)p2Dom(P) a collection of automata such that for all hp : eli 2 P , bC; bE ; bAp ` e
l.

We have a
\

(
bS)l a

]

(
bS)

Hence, j=] can be used instead of j=\ without discarding the properties es-

tablished in Section 5.1. So, if bC; bE ; bA]

 j=

] P then bC; bE ; bA\

 j=

\ P for some bA\

such that bA\

 l

bA]

. We end this Section by introducing the following property

about the the size of the reduced product automaton.

Proposition 10 (Size of the reduced automaton) Let bS be a collection of

k automata of size O(m) and let n = km. The reduced product automaton a
]

(
bS)

has size O(n4).

Proposition 10 stems from the following observations. There is at most O(n)

synchronization points in the program. So, the number of state in a]

(
bS) is O(n2)

and the transition function has size O(n4). For a given q 2 Q], L(q) contains all

the labels of the program in the worst case, i.e. L(q) has size O(n). Hence L has

size O(n3) and the whole size of the automaton consequently is O(n4), due to

the transition function.

Because of the size limitations, we do not show how to automatically com-

pute an analysis for a process pool P . However, one can generate a set c[P]

of constraints such that a solution (bC; bE ; bA
) to c[P] satis�es bC; bE ; bA
 j=] P .

The least solution can be computed in polynomial time. One method consists

of using a graph formulation of the constraints [19, 25]. Each set constrained by

c[P] corresponds to a node in a graph G and edges are related to constraints. In

this case, the complexity of the resolution of c[P] for a process pool P described

by a program of size O(n) stems from the following observations. G contains at

most O(n4) vertices and O(n4) edges. A node is examined as many times as its

related value is modi�ed. Since values have size O(n2), the whole complexity of

this resolution method is O(n6).

6 Application

In this Section, we comment the results given by an implementation of the CFA.

We consider a virtual circuit allocation mechanism similar this of ATM [1, 26].

6.1 Virtual Circuit Allocation

Virtual circuit creation follows the scheme of Figure 8. The di�erent nodes of the

network are linked to their neighbors by control channels. These channels are

used to forward a circuit creation message from the source node to the destination

node. The latter creates a link with its neighbor which proceeds similarly until

the source node is reached (still using control channels). Next, each intermediary

node propagates the data received on its input link to its output link.

Source Switch #1 Switch #2 Destination

Setup

Setup

Setup

Connect

Connect

Connect

Send

Send

Send

Te
m

ps

Fig. 8. Principle of virtual circuit allocation.

A full implementation of this mechanism was realized in the core language

treated in this article. For simplicity, we give a simpli�ed version written in an

imperative pseudo-language (Figure 9). We only use one intermediary node.

We assume that processes p1, p2 and p3 are concurrently running on three

di�erent nodes of the network. #ctrl 12 (resp. #ctrl 23) is a bidirectional con-

trol channel linking the nodes of p1 and p2 (resp. p2 and p3). In addition, since p1
creates two di�erent circuits a and b, the pieces of code given for process p2 are

executed twice. In our implementation, we use a 0-CFA [19] for the sequential

parts of the language. This enforces us to duplicate these pieces of code in or-

der to keep enough precision. It could be avoided by using a more sophisticated

analysis (1-CFA). So, in Figure 9, the two labels annotating some instructions

correspond to the unique labels of two copies of the same piece of code.

p1, p2 and p3 work as follows. p1 successively asks for two new circuit cre-

ations. Function connect sends an initialization message on the control channel

#ctrl 12 and binds variable virt ch a to the channel name to be used for a.

Processus p1 (source) Processus p2 (switch) Processus p3 (destination)

function connect(dest) =
f send #ctrl 12 init(dest);

ch receive
7;19 #ctrl 12;

return ch;
g

function main()

f virt ch a connect(3)13;

virt ch b connect(3)25;

send virt ch a data a30;

send virt ch b data b35;
g

: : :

ctrl msg receive
51;84 #ctrl 12;

send #ctrl 23 ctrl msg;

ch out receive
56;89 #ctrl 23;

ch in channel()
58;91;

send #ctrl 12 ch in;
fork (while do

send ch out

(receive 62;95 ch in)
);

: : :

: : :

ctrl msg receive #ctrl 23;

ch dest channel()
124;129;

send #ctrl 23 ch in;

receive
132;134 ch in;

: : :

Fig. 9. Implementation of the virtual circuit allocation mecanism. Procedure connect

as well as the pieces of code of processes p2 and p3 are executed twice.

This scheme is repeated for b. Finally, data are transmitted on virt ch a and

virt ch b.

p2 corresponds to the node between the source and the destination. When a

virtual circuit creation request is received on #ctrl 12, it is transmitted to the

destination on the control channel #ctrl 23. p2 next receives the output channel

name to use and binds variable ch out. Next, it creates a new channel ch in

which is sent to the source process. The last operation consists of creating a

new process which forwards on ch out the values received on ch in. The whole

process is repeated for the virtual circuit b.

Finally, p3 corresponds to the destination node. When the control message is

received, p3 creates a new channel and binds variable ch in. This channel name

is transmitted to p2 via control channel #ctrl 23. Once the circuits are created,

p3 receives data on a and b.

6.2 Analysis

We used our analysis to check the correctness of a full implementation of the

program described in Figure 9. Here we present the results we obtained, trans-

lated to the program of Figure 9. Figure 10 gives the abstract values obtained

for the points of interest and for relevant variables. As indicated above, some

pieces of code are executed twice. In Figure 10, we indicate for variables which

execution is referenced by (a) and (b).

The main observation concerns the abstract values received by p3 at points

132 and 134. These values, f30g and f35g, are the ones emitted by p1 on circuits

a and b. This validates the mechanism. The values received on a (resp. b) are

the ones emitted on this channel and only these ones. This guarantees that p2
does not invert the data received on its input links and forwarded on its output

links.

Concerning the virtual circuit a, one can check that the variables virt ch a

and ch dest (a) corresponding to the extremities of the circuit are bound to f58g

and f124g which correspond to the channel names created at these points. The

new process created by p2 forwards on a name created at point 124 the data

Label 7 13 19 25 30 35 51 56 58

Value f58g f13g f91g f25g f30g f35g f13g f124g f58g

Label 62 84 89 91 95 124 129 132 134

Value f30g f25g f129g f91g f35g f124g f129g f30g f35g

Variable #ctrl 12 #ctrl 23 virt ch a virt ch b ctrl msg (a) ctrl msg (b)

Value f1g f2g f58g f91g f13g f25g

Variable ch in (a) ch in (b) ch out (a) ch out (b) ch dest (a) ch dest (b)

Value f58g f91g f124g f129g f124g f129g

Fig. 10. Abstract values attached to the labels of the program of Figure 9.

received on a name created at point 58 (variables ch in (a) and ch out (a)).

Thus, the transmission of data from the source to the destination is ensured.

In addition, it is possible to check that the channel names of abstract value

f58g and f124g are not used elsewhere in the program. So, the data emitted

on the virtual circuit a only are transmitted to the destination node. Similar

observations can be done for the virtual circuit b.

Finally, let us take note that in order to obtain these results, the analysis has

to use an approximation of the communication topology of the program. The

same control channels #ctrl 12 et #ctrl 23 are used for both circuit creation.

An analysis based on Equation (1) could not obtain these results. The result

would be virt ch a = virt ch a = f58; 91g which does not enable us to check

that no confusion is done between the data transmitted on both circuits.

We also used this analysis in order to verify security properties for an auction

distributed application. This system is made of a server and several clients who

send to the server public data (e.g. their price) as well as con�dential data (e.g.

their credit card number). Each client is linked to the server by one communi-

cation channel. The server broadcasts the public data and conserves the private

ones. We show that, in our implementation, the only public data are actually

broadcasted.

7 Conclusion

In this article, we introduced a static analysis able to depict a conservative image

of the communication topology of a concurrent system written in Concurrent

ML. The dynamic aspects of concurrency are managed, including forks, the

transmission of functions and channel creations. This analysis is a CFA which

builds a �nite automaton in order to increase its precision. It was implemented

and results are discussed in Sections 2 and 6.

Using product automata allows us to derive a �ne approximation of the topol-

ogy, as shown in Section 2. This represents the main contribution of this article.

It enables to minimize the abstract value attached to reception points. Gains

are twofold. First, this increase the precision of the analysis for the sequential

part of the program following the reception. Second, since channel names are

potentially communicated, we also de�ne more concisely the pairs of possible

emitters and receptors for further communications.

We believe that the gains due to the introduction of topological informa-

tion in the CFA improve the analysis of many kinds of applications. For quite

common deterministic communication schemes, such as a sequence of commu-

nications on the same channel between two processes, this makes possible to

distinguish between the values sent at each stage. For more complicated com-

munication schemes, precision may decrease at some points in the program, for

instance because of alternatives, loops or non-determinism. However, precision

will increase again once the ambiguities disappear, for instance after a global

synchronization.

Now, we are interested in mixing it with other analyses, in order to increase

the conciseness of the annotations. We focus on a binding time analysis [8, 12]

which uses topological informations during its analysis of programs. In this con-

text, our CFA would enable to distinguish between the static and dynamic values

sent on the same channel, while usual analyses consider a channel dynamic as

soon as a dynamic value is sent on it.

References

1. Antony Alles. ATM Internetworking. Technical report, 1995. CISCO Systems Inc.

2. T Amtoft, Flemming Nielson, and Hanne Riis Nielson. Behaviour analysis and

safety conditions: a case study in CML. In FASE'98, number 1382 in Lecture

Notes in Computer Science, pages 255{269. Springer-Verlag, 1998.

3. Dave Berry, Robin Milner, and David N. Turner. A semantics for ML concurrency

primitives. In Proceedings of the ACM-SIGPLAN Symposium on Principles of

Programming Languages POPL'92. ACM, 1992.

4. Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Con-

trol
ow analysis for the pi-calculus. In Concur'98, number 1466 in Lecture Notes

in Computer Science, pages 84{98. Springer-Verlag, 1998.

5. Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Static

analysis of processes for no read-up and no write-down. In FOSSAC'99, number

1578 in Lecture Notes in Computer Science, pages 120{134. Springer-Verlag, 1999.

6. Christopher Colby. Analyzing the communication topology of concurrent pro-

grams. In Proceedings of the ACM-SIGPLAN Symposium on Partial Evaluation

and semantic based program manipulations PEPM'95, pages 202{213. ACM, 1995.

7. Charles Consel and Olivier Danvy. Partial evaluation: Principles and perspectives.

In Proceedings of the ACM-SIGPLAN Symposium on Principles of Programming

Languages POPL'93. ACM, 1993.

8. Marc Gengler and Matthieu Martel. Self-applicable partial evaluation for the

pi-calculus. In Partial Evaluation and Semantics-Based Program Manipulation,

PEPM'97, pages 36{46, 1997.

9. Marc Gengler and Matthieu Martel. Des �etages en Concurrent ML. In Rencontres

Francophones du Parall�elisme, Renpar10, 1998.

10. Suresh Jagannathan. Locality abstractions for parallel and distributed comput-

ing. In International Conference on Theory and Practice of Parallel Programming,

number 907 in Lecture Notes in Computer Science. Springer-Verlag, 1994.

11. Naoki Kobayashi, Motoki Nakade, and Akinori Yonezawa. Static analysis of com-

munications for asynchronous concurrent programming languages. In SAS'95, vol-

ume 983 of LNCS, pages 225{242. Springer-Verlag, 1995.

12. Mihnea Marinescu and Benjamin Goldberg. Partial evaluation techniques for con-

current programs. In ACM-SIGPLAN Symposium on Partial Evaluation and Se-

mantic Based Program Manipulations PEPM'97, pages 47{62. ACM, 1997.

13. Nicolas Mercouro�. An algorithm for analyzing communicating processes. Lecture

Notes in Computer Science, 598:312{325, 1992.

14. Flemming Nielson and Hanne Riis Nielson. Constraints for polymorphics be-

haviours of Concurrent ML. In Constraints in Computational Logics, number 845

in Lecture Notes in computer Science, pages 73{88. Springer-Verlag, 1994.

15. Flemming Nielson and Hanne Riis Nielson. Higher-order concurrent programs with

�nite communication topology. In Proceedings of the ACM-SIGPLAN Symposium

on Principles of Programming Languages POPL'94, pages 84{97. ACM, 1994.

16. Flemming Nielson and Hanne Riis Nielson. Static and dynamic processor allocation

for higher-order concurrent languages. In TAPSOFT'95, number 915 in Lecture

Notes in Computer Science, pages 590{604. Springer-Verlag, 1995.

17. Flemming Nielson and Hanne Riis Nielson. In�nitary control
ow analysis: a col-

lecting semantics for closure analysis. InACM-SIGPLAN Symposium on Principles

of Programming Languages POPL'97, pages 332{345. ACM, 1997.

18. Flemming Nielson and Hanne Riis Nielson. Communication analysis for Concurrent

ML. In ML with Concurrency, Monograph in Computer Science, pages 185{251.

Springer, 1999.

19. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer, 1999.

20. John H. Reppy. An operational semantics of �rst-class synchronous operations.

Technical Report TR-91-1232, Department of Computer Science, Cornell Univer-

sity, Ithaca, NY 14853, 1991.

21. John H. Reppy. Higher-order Concurrency. PhD thesis, Department of Computer

Science, Cornell University, Ithaca, NY 14853, 1992.

22. John H. Reppy. Concurrent Programming in ML. Cambridge University Press,

1999.

23. Olin Shivers. Control
ow analysis in scheme. In Proceedings of the ACM-

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI'88, pages 164{174. ACM, 1988.

24. Olin Shivers. Control Flow Analysis of Higher Order Languages. PhD thesis,

Carnegie Mellon University, 1991. Technical Report CMU-CS-91-145.

25. Kirsten L Solberg, Flemming Nielson, and Hanne Riis Nielson. Systematic realisa-

tion of control
ow analyses for CML. InACM-SIGPLAN International Conference

on Functional Programming, ICFP'97, pages 38{51. ACM, 1997.

26. Andrew S. Tanenbaum. Computer Networks, Third Edition. Prentice Hall, 1996.

